Версия для печати

Основания и фундаменты СТО-СА-03-002-2009

10.1. Основные положения

10.1.1. Проектирование основания и фундаментов под резервуар должно выполняться специализированной проектной организацией с учетом положений ГОСТ Р 52910-2008, СНиП 2.02.01-83*, СНиП 2.02.03-85; СНиП 2.02.04-88; СНиП II-7-87 и дополнительных требований настоящего Стандарта.

10.1.2. Материалы инженерно-геологических и гидрологических изысканий площадки строительства должны содержать следующие сведения о грунтах и грунтовых водах:

  • литологические колонки под пятно резервуара, количество, глубина и расположение которых должны обеспечить построение достоверных разрезов вдоль контурной окружности основания и по ее диаметрам;
  • физико-механические характеристики грунтов, представленных в литологических колонках (удельный вес γ, угол внутреннего трения φ, сцепление С, модуль деформации Е, коэффициент пористости ε);
  • расчетный уровень грунтовых вод с прогнозом гидрологического режима на ближайшие 20 лет для резервуаров объемом до 10000 м3 и на 50 лет для резервуаров объемом более 10000 м3.

Кроме того, если сжимаемая толща представлена слабыми грунтами (модуль деформации менее 10 МПа), то для каждой грунтовой разности должны быть приведены значения коэффициента фильтрации.

Для величин физико-механических характеристик грунтов должны приводиться однозначные расчетные значения.

При проектировании фундаментов резервуаров в сложных инженерно-геологических условиях инженерные изыскания должны выполняться специализированными организациями и содержать данные для выбора типа оснований и фундаментов с учетом возможного изменения (в процессе строительства и эксплуатации) инженерно-геологических и гидрологических условий площадки строительства.

10.1.3. Расчет основания по деформациям предусматривает определение расчетных значений величин, характеризующих абсолютные и относительные перемещения фундаментных конструкций и элементов стальной оболочки резервуара с целью их ограничения, обеспечивающего нормальную эксплуатацию резервуара и его долговечность.

10.1.4. Расчет осадок основания резервуара следует выполнять, как правило, с использованием расчетной схемы основания в виде линейно-деформируемой среды: полупространства с условным ограничением глубины сжимаемой толщи или слоя конечной толщины.

В случае, если расчетные значения деформаций основания превышают предельные значения, следует выполнить расчет осадок с учетом совместной работы оболочки резервуара и основания, рассматривая расчетную схему основания, характеризуемую коэффициентами жесткости, в качестве которых принимаются отношения давления на основание к его расчетным осадкам в различных точках поверхности согласно рекомендациям СНиП 2.01.09.

Расчет системы «резервуар-основание» может быть выполнен также с использованием существующих вычислительных комплексов по определению осадок фундаментов с учетом взаимодействия основания и оболочки резервуара.

10.1.5. Проектная высота расположения днища резервуара определяется технологическим заданием, однако, эта высота должна превышать максимальный уровень окружающей спланированной поверхности земли минимум на 0.5 м, а после достижения основанием расчетных осадок высота днища над уровнем окружающей земли должна быть не менее 0,15 м.

10.1.6. В проекте КМ должно быть представлено задание для проектирования основания и фундаментов под резервуар, включающее расчетные реактивные усилия (нагрузки), передаваемые от корпуса резервуара на его фундамент, а также величины допустимых деформаций основания.

10.2. Расчет нагрузок на основание и фундамент резервуара

10.2.1. Реактивные усилия, передаваемые с корпуса на основание и фундамент резервуара, определяются в зависимости от конструктивных, технологических, климатических, сейсмических нагрузок и их сочетаний, приведенных в таблице П.4.6 Приложения П.4.

10.2.2. В состав нагрузок, передаваемых по контуру стенки резервуара на его фундамент, входят нагрузки двух типов.

Нагрузки первого типа, обеспечивающие осесимметричное распределение усилий по контуру стенки, включают:

  • вес резервуара с учетом оборудования и теплоизоляции, за вычетом центральной части днища;
  • снеговую нагрузку;
  • избыточное давление и разрежение в газовом пространстве резервуара.

Нагрузка второго типа возникает от ветрового воздействия на корпус резервуара и создает кососимметричное распределение усилий по контуру стенки.

Ветровая нагрузка вызывает появление опрокидывающего момента, вычисляемого относительно точки, расположенной на оси симметрии опорного контура стенки с подветренной стороны резервуара. Нагрузки первого типа создают момент, препятствующий опрокидыванию резервуара.

10.2.3. Перечень необходимых расчетов включает:

  • определение нагрузок на центральную часть днища в условиях эксплуатации, гидро- пневмоиспытаний и при сейсмическом воздействии;
  • расчет максимальных и минимальных нагрузок по контуру стенки в условиях эксплуатации и при сейсмическом воздействии;
  • проверку на отрыв окраек днища от фундамента при действии внутреннего избыточного давления на пустой резервуар;
  • проверку на опрокидывание пустого резервуара путем сравнения опрокидывающего момента и момента от удерживающих сил;
  • проверку резервуара с продуктом на опрокидывание в условиях землетрясения;
  • расчет анкеров, если происходит отрыв окраек днища от фундамента при действии внутреннего давления на пустой резервуар;
  • расчет анкеров, если устойчивость пустого резервуара от опрокидывания не обеспечена;
  • расчет анкеров, если устойчивость резервуара с продуктом от опрокидывания при землетрясении не обеспечена.

Расчет нагрузок на основание и фундамент резервуара при землетрясении приведен в п. 9.6.6.

10.2.4. Опрокидывающий момент, действующий на резервуар в результате ветрового воздействия, вычисляется по формуле:

где

10.2.5. Расчетная погонная нагрузка по контуру стенки характеризуется максимальным и минимальным значениями, соответствующими диаметрально противоположным участкам фундамента (рис. 10.1). Максимальная и минимальная нагрузки определяются соответственно, как сумма и разность максимальных нагрузок первого и второго типа (с учетом знаков). Расчетная нагрузка по контуру стенки в основании резервуара определяется по формулам:

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

Рис. 10.1. Нагрузки на фундамент, передаваемые по контуру стенки резервуара

10.2.6. Расчетная вертикальная нагрузка на фундамент резервуара, соответствующая 1-му расчетному сочетанию нагрузок (таблица П. 4.6 Приложения П.4), составляет:

Qmax = γn{1,05(Gs + Gr) + 0,95[1,05(Gs0 + Gr0) + 1,3(Gst + Grt)] + (0.9fsps + 0,95·1,2рv)πr2}.

10.2.7. Если теплоизоляция, или вакуум, или снеговая нагрузка отсутствуют, формула 10.2.6 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.8. Коэффициент fs назначается согласно указаниям п. 9.2.3.1.7.

10.2.9. Нагрузки на центральную часть днища определяются исходя из величины внутреннего избыточного давления, максимального проектного уровня налива и плотности продукта (эксплуатация) или воды (гидро- пневмоиспытания). Эту нагрузку следует определять по формулам:

pf = γn[0,001g(ρH + ρstbc) + 1,2p],

Pfg = γn[0,001g(ρgH0g + ρstbc) + 1,25p].

10.2.10. Требования по установке анкеров

10.2.10.1. Анкеровка корпуса резервуара требуется если:

  • происходит отрыв окраек днища от фундамента при действии внутреннего избыточного давления;
  • момент от сил, вызванных ветровым воздействием, превышает момент от вертикальных удерживающих сил, действующих на пустой резервуар.

10.2.10.2. В случаях, указанных в п. 10.2.10.1, стенка резервуара прикрепляется к фундаменту анкерными устройствами, шаг установки и размеры которых определяются расчетом.

10.2.10.3. Требуется установка анкеров, если выполняются следующие неравенства, соответствующие условиям п. 10.2.10.1:

Qmin < 0, (Qmin - Fwvr)r ≤ Мw.

Левая часть второго неравенства представляет момент от удерживающих сил, а правая - опрокидывающий момент, определяемый по формуле п. 10.2.4.

10.2.10.4. Подъемная сила от действия ветра на крышу определяется по формуле:

Fwvr = l,4·0,6γnπr2pw.

Для конических крыш с углом наклона αr ≥ 5° и сферических крыш высотой fr ≥ 0,1D, а также для резервуаров с плавающими крышами следует принять Fwvr = 0.

10.2.10.5. Расчетная минимальная вертикальная нагрузка на фундамент резервуара вычисляется для 3-го расчетного сочетания нагрузок (таблица П. 4.6 Приложения П.4) и составляет:

Qmin = γn[(Gs + Gr) + 0,95(Gs0 + Gr0 + Gst + Grt) - 1,2·0,95р π r2].

10.2.10.6. Если теплоизоляция или избыточное давление отсутствуют, формула 10.2.10.5 должна быть приведена в соответствие с полученным сочетанием нагрузок.

10.2.10.7. Расчетное усилие в одном анкерном болте определяется по формуле:

10.3. Конструктивные решения фундаментов

10.3.1. Устройство фундаментов под резервуары рекомендуется выполнять с применением следующих конструктивных решений:

  • грунтовая подушка (рис. 10.2);
  • кольцевой железобетонный фундамент (рис. 10.3);
  • сплошная железобетонная плита (рис. 10.4).

10.3.2. Для устройства грунтовой подушки используются чистые и прочные сыпучие материалы - песок и щебень.

Рис. 10.2. Грунтовая подушка

Рис. 10.2. Грунтовая подушка

Формирование подушки осуществляется слоями толщиной около 150 мм с утрамбовкой слоев катками массой от 5 до 10 тонн. Высота подушки должна составлять не менее 0,5 м.

По верху подушки устраивается гидрофобный слой из битумно-песчаной смеси толщиной не менее 50 мм, состоящей из формованной в горячем состоянии смеси следующих компонентов: 9 % битума, растворенного в чистом керосине, 10 % портландцемента и 81 % чистого песка.

Дренаж грунтовой подушки и контроль протечек через возможные повреждения днища обеспечивается путем установки по периметру фундамента на расстоянии не более 5 м друг от друга радиальных дренажных трубок диаметром 75 мм, закрытых с торцов пластиковой сеткой 10 × 10 мм.

Рис. 10.3. Кольцевой железобетонный фундамент

Рис. 10.3. Кольцевой железобетонный фундамент

10.3.3. Кольцевой железобетонный фундамент используется при наличии значительных контурных нагрузок по периметру стенки или при необходимости установки анкеров.

Ширина кольцевого фундамента должна быть не менее 0,8 м для резервуаров объемом до 3000 м3 и не менее 1,0 для резервуаров объемом свыше 3000 м3. Толщина железобетонного кольца принимается не менее 0,3 м. При строительстве резервуаров в сейсмических районах наличие кольцевого железобетонного фундамента является обязательным. Ширина кольца должна быть не менее 1.5 м, а толщина не менее 0,4 м.

Рис. 10.4. Сплошная железобетонная плита

Рис. 10.4. Сплошная железобетонная плита

Рис. 10.4. Сплошная железобетонная плита

10.3.4. Фундамент в виде сплошной железобетонной плиты рекомендуется для резервуаров диаметром не более 15 м на немерзлых грунтах, для всех резервуаров на мерзлых грунтах, а также для всех резервуаров при хранении в них этилированных бензинов, реактивного топлива или иных ядовитых продуктов. Для обнаружения возможных протечек продукта железобетонная плита должна иметь уклон не менее 1 % от центра к периметру, а также радиально расположенные дренажные канавки.

< назадк содержанию / вперед >